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S U M M A R Y  
Dual integral equations with Hankel kernels are reduced to simple integral equations whose unknowns are physically 
meaningful quantities. Numerical methods for solving these integral equations are established and applied to a problem 
in electrostatics. 

1. Introduction 

Dual integral equations arise in many areas of mathematical physics, especially in connection 
with mixed boundary value problems. Analytical methods for obtaining solutions to dual 
integral equations have been studied by many authors, and a summary of the important results 
is given in Sneddon's recent book [4]. Much less attention has been paid to numerical methods 
for solving these problems. The standard approach to solving dual integral equations is to 
reduce them to Fredholm integral equations of the second kind (Williams [5]), which can be 
used to obtain series expansions for the solutions provided certain parameters are small. In 
some cases (e.g. Cooke [1]) the Fredholm equations are used directly to obtain numerical 
results. The unknowns involved in these Fredholm equations are certain auxiliary functions 
and further transformations have to be applied to obtain the physically meaningful quantities. 

The present paper takes a different approach by developing integral equations directly in 
terms of physical quantities and uses numerical techniques to solve the equations. The nu- 
merical approach, while giving up a certain amount of generality, avoids a great deal of 
difficult analytical manipulation and thus makes the approach potentially applicable to a 
wider class of problems. 

The main problem treated in this paper is relatively simple and has been solved by other 
methods, although our results appear to be more extensive and more accurate than previously 
published solutions. The approach, however, is quite general and has been used by the author 
to treat more complicated problems [2]. While the investigation of the general applicability 
of this method is not completed, it is hoped that it will eventually lead to fairly routine ways of 
obtaining numerical solutions of dual integral equations. 

2. Reduction of Dual Integral Equations 

We consider the dual integral equation 

f(r) = A(~)h(~)Jo(~r)d~, (1) 
o 

g(r) = f o  ~ B(~)h(~)J~ (2) 

where h(0 is unknown, and is to be determined by the conditions that 

f ( r )=e(r ) ,  for O < r < a ,  
g(r)=O , for r > a .  

One is usually not interested in h (0, but in the physical quantities. Specifically, one often wants 
to know g(r) for O< r_< a. 
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Inverting (2) by Hankel's inversion theorem, 

B(r162 = pg(p) Jo(~p)dp = pg(p) Jo(r . 

Substituting into (1) we have 

fo  (aA(r pgCo)Jo(r162162 0-<r -<a .  
Jo B (~) 

To simplify we multiply by r (x 2 -  r2) - ~ and integrate from 0 to x. Then 

r (x - r ) - -  ~ po (p) Jo(~P) Jo (~r) dp d~ dr = F1 (x), (3) 

where 

FI(x) = f2rF(r)(x2-r2)-~dr .  

Interchanging orders of integration in (3) and using 

fi : rJo(~r ) (x z _ r2)_+ d r _ sin Cx ' 

we get 

fa frO 3 A(~) sin I x  dpd~ = FI(X ). o Pg(P)Jo(~P) B(r 

A further simplification can be obtained by differentiating with respect to x, and we get finally 

'oPK (x, p) g(p) dp = V'~ (x), (4) 

where 

fO ~ A(~) Jo(~P) cos ~xd~ . (5) K (x, p) = B ~  

Equations (4) and (5) are the basic equations which will be used to obtain numerical results. 
It should be remarked that the technique used in obtaining these equations is closely related 
to the fractional integration methods (Sneddon [4], Noble [3]) usually employed; the main 
difference of the present approach lies in the establishing of an integral equation in terms of 
the variable g. The analysis also assumed that the orders of integration can be interchanged--an 
assumption which needs to be verified in each particular case. 

3. Charge on an Electrified Disk 

This problem has been solved by many authors using a variety of techniques which are 
summarized by Sneddon ([4], chapter 3). The dual integral equations for the electrified disk 
with unit radius, held at a unit potential, are a special case of (1) and (2) with 

= 4 - 1 ,  

F(r) = 1, 
a = l .  

Then, from (5), 

g (x, p) = Jo (~P) cos ix  d~ = 0, p < x ,  
0 = (p2--X2)-~, p>x .  

Thus (4) becomes 

f d r(x2-r2)-~zdr = 1, p(p2-x2)-~g(p)dp = dx o 
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which can be inverted directly to give 

g(p) 2 2 -~ 
= - ( 1 - p  ) ~. 

The charge density o-(p) on the disk is 

1 2 - *  
= (1 - p )  (p) = g(p) ~ 

4. The Circular Plate Condenser 

We now consider the case of two coaxial, parallel disks, separated by a distance ~c, and charged 
to equal and opposite potentials V = + 1. The dual integral equations for this case are ([4], 
p. 233) 

i o  ~-l(1-e-~r176 1, 

o~ h(QJo(~r)d~ = O, 

For this case we have 

fo , K(x, p) = 1-e-"r162 cos ~xd~ 

where 

I (p, x) 

with 
S = K 2 - [ - p 2 - - X 2  , 

Thus, (4) becomes 

f l  2 --* 
p (p2 - x ) ~ g ( p )  d p  - 

X 

O< r <  1, (6) 

r > 1. (7) 

= - I ( p ,  x) ,  p <  x ,  

= 

= ~2[s2+t2]-~[(s2+t2)�89 ~ , 

t = 2Kx. 

f~ pI(p, x)g(p)dp = 1, x< a . for 0 <  (8) 
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5. Numerical Solution of Equation (8) 

The unknown g (p) is proportional to the charge density; hence from physical considerations 
we expect that it will have a singularity of the form ( l - p 2 )  -~ near p= 1. To facilitate the 
numerical computations we introduce 

G(p) = ( 1 -  p2?g(p)  

and rewrite (8) in terms of G (p): 

f2 p(p2-x2)- 0 -p2)- c(o)dp - x) (p)dp = 1. (9) 

The integrands still have singularities, but numerical methods for integrands of this type are 
easily established using the technique of product integration [6]. To establish the appropriate 
procedures we divide the range [0, 1] into 2N subintervals, separated by points Pi, such that 

P 2 i - - P 2 1 - 1  = P 2 1 + l - - P 2 i  = h i ,  i=1,  2 . . . .  N .  

In each interval (P2~- 1, P2~+ 1) the function G(p) is approximated by a quadratic interpolation 
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polynomial through the points P2i-1, P2i and P2i+ 1. Then 

G(p) ~: G2i- x q- P - P 2 i - 1  [2G2i-1.5G2,_,-O.SG2,+,]  
hi 

+ (P--P2i-1)2 [G2i - 2Gi+Gzi+l] 
2h 2 1 - , 

for P2i-1 ~ P~ P2i+ 1, where Gj denotes G(pj). 
If we use this approximation in (9) and satisfy the resulting equations at Pl, P2, ... P2N+I 

we get a linear system of equations 
2N+ 1 2N+ 1 

E W, , ,G , -  ~ V~,,G,=I, n = l ,  2 . . . .  2 N + l ,  (10) 
i=1 i=1 

where W,,2i = 2Kt(i , n)-K2(i ,  n), 

Wn,2i+1 = - 0-5K1 (i, n) + 0.5K 2 (i, n) - 1.5K1 (i + 1, n) + 0.5K2 (i + 1, n) + Ko(i + 1, n), 

7Z 
W2N+I ,2N+I  ~--- 2 ,  

V,.2i = 2Ll(i, n)-L2(i ,  n), 

V~,2,+ 1 = -0.5L1(i, n)+ 0.5L2(i, n ) -  1.5L1(i+ 1, n)+ 0.5L2(i+ 1, n)+Lo(i+ 1, n), 
with 

1 -[p2,.~ p(p_p2i_~)m dp j ~ 2 i ,  Km(i' J) = ~ ~p2,-1 (p2 -- p2~ t l -- p2) , , ' 

1 (p2,§ p(p__P2i_l)m 
= C  2) aP' j=2i, 

for j =  1, 2 . . . .  2N, i=  (]+ 1)/2, ... N, and K,,(i, j )=0  otherwise. L,, is defined similarly: 

1 (P~'+~ pI(p, pj)(p--P2i_l) m 
Lm(i'J) = -~i Jp2,-1 ( l _p2 )  �89 dp , 

for j =  1, 2 . . . .  , 2 N +  1, i=  1, 2, ..., N, and Lm(i,j) = 0  otherwise. 
If we can evaluate the moment integrals K,,(i,j) and Lm(i,j) then (10) can be solved by 

standard methods. For many problems such integrals can be evaluated in closed form, but 
even if this is inconvenient, as in the present case, it is usually easy to compute them numerically. 
We used a Romberg quadrature scheme, with some modification near points where the in- 
tegrand is unbounded, to evaluate the integrals to an accuracy of about 10 -6. Once G(p) is 
known, we can get 9 (P) and from it the capacitance C by 

f~  2 --I  C=�89  p ( 1 - p  ) ~G(o)d p .  

For small tc it was also found convenient to use variable hi. The choice 

h~=�89 i n ~ -  sin 

gave good results. 

6. Numerical Results for the Circular Plate Condenser 

To compare with previous results we computed the quantity 

F = ~ C  = ~ p ( 1 - p Z ) - ~ G ( p ) d p .  
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The most extensive previous results appear to be those of Cooke [1] (also quoted by Sneddon). 
Cooke did not carry out any computations for x < 0.1 because of numerical difficulties. Our 
results, summarized in Table 1, extend the range to lower re. Agreement to at least four signifi- 
cant digits with Cooke's results was found in the overlapping cases. 

TABLE 1. 

Values of F for the Circular Plate Condenser. 

N 2 4 6 8 12 
K 

~01 78.29911 80 .19972  80 .41695  80.43130 
0.05 17.10715 17 .22964  17 .23128 17.23214 
0.10 9.21875 9 . 2 3 2 3 1  9.23310 9.23311 
0.40 3.10250 3 . 1 0 2 3 3  3.10230 3.10229 
0.60 2.39564 2 . 3 9 5 4 5  2.39543 
1.00 1.82087 1 . 8 2 0 7 8  1.82078 

80.43853 
17.23205 

The convergence of the results, while somewhat slow as x becomes very small, is still suf- 
ficiently fast to get good results without excessive computer time. Even in the worst case, 
to= 0.01, our results appear to be correct to at least four significant digits. 
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